Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Stroke Vasc Neurol ; 7(2): 158-165, 2022 04.
Article in English | MEDLINE | ID: covidwho-1832554

ABSTRACT

RATIONALE: Haematoma growth is common early after intracerebral haemorrhage (ICH), and is a key determinant of outcome. Tranexamic acid, a widely available antifibrinolytic agent with an excellent safety profile, may reduce haematoma growth. METHODS AND DESIGN: Stopping intracerebral haemorrhage with tranexamic acid for hyperacute onset presentation including mobile stroke units (STOP-MSU) is a phase II double-blind, randomised, placebo-controlled, multicentre, international investigator-led clinical trial, conducted within the estimand statistical framework. HYPOTHESIS: In patients with spontaneous ICH, treatment with tranexamic acid within 2 hours of onset will reduce haematoma expansion compared with placebo. SAMPLE SIZE ESTIMATES: A sample size of 180 patients (90 in each arm) would be required to detect an absolute difference in the primary outcome of 20% (placebo 39% vs treatment 19%) under a two-tailed significance level of 0.05. An adaptive sample size re-estimation based on the outcomes of 144 patients will allow a possible increase to a prespecified maximum of 326 patients. INTERVENTION: Participants will receive 1 g intravenous tranexamic acid over 10 min, followed by 1 g intravenous tranexamic acid over 8 hours; or matching placebo. PRIMARY EFFICACY MEASURE: The primary efficacy measure is the proportion of patients with haematoma growth by 24±6 hours, defined as either ≥33% relative increase or ≥6 mL absolute increase in haematoma volume between baseline and follow-up CT scan. DISCUSSION: We describe the rationale and protocol of STOP-MSU, a phase II trial of tranexamic acid in patients with ICH within 2 hours from onset, based in participating mobile stroke units and emergency departments.


Subject(s)
Cerebral Hemorrhage , Tranexamic Acid , Antifibrinolytic Agents/adverse effects , Antifibrinolytic Agents/therapeutic use , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/drug therapy , Clinical Trials, Phase II as Topic , Hematoma/etiology , Hematoma/prevention & control , Humans , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Stroke/therapy , Time Factors , Tranexamic Acid/adverse effects , Tranexamic Acid/therapeutic use
2.
J Stroke ; 24(1): 79-87, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1675155

ABSTRACT

BACKGROUND AND PURPOSE: Changes to hospital systems were implemented from March 2020 in Australia in response to the coronavirus disease 2019 pandemic, including decreased resources allocated to stroke units. We investigate changes in the quality of acute care for patients with stroke or transient ischemic attack during the pandemic according to patients' treatment setting (stroke unit or alternate ward). METHODS: We conducted a retrospective cohort study of patients admitted with stroke or transient ischemic attack between January 2019 and June 2020 in the Australian Stroke Clinical Registry (AuSCR). The AuSCR monitors patients' treatment setting, provision of allied health and nursing interventions, prescription of secondary prevention medications, and discharge destination. Weekly trends in the quality of care before and during the pandemic period were assessed using interrupted time series analyses. RESULTS: In total, 18,662 patients in 2019 and 8,850 patients in 2020 were included. Overall, 75% were treated in stroke units. Before the pandemic, treatment in a stroke unit was superior to alternate wards for the provision of all evidence-based therapies assessed. During the pandemic period, the proportion of patients receiving a swallow screen or assessment, being discharged to rehabilitation, and being prescribed secondary prevention medications decreased by 0.58% to 1.08% per week in patients treated in other ward settings relative to patients treated in stroke units. This change represented a 9% to 17% increase in the care gap between these treatment settings during the period of the pandemic that was evaluated (16 weeks). CONCLUSIONS: During the first 6 months of the pandemic, widening care disparities between stroke units and alternate wards have occurred.

3.
BMJ Open ; 11(5): e043488, 2021 05 10.
Article in English | MEDLINE | ID: covidwho-1259007

ABSTRACT

INTRODUCTION: Stroke is a common cause of epilepsy that may be mediated via glutamate dysregulation. There is currently no evidence to support the use of antiseizure medications as primary prevention against poststroke epilepsy. Perampanel has a unique antiglutamatergic mechanism of action and may have antiepileptogenic properties. This study aims to evaluate the efficacy and safety of perampanel as an antiepileptogenic treatment in patients at high risk of poststroke epilepsy. METHODS AND ANALYSIS: Up to 328 patients with cortical ischaemic stroke or lobar haemorrhage will be enrolled, and receive their first treatment within 7 days of stroke onset. Patients will be randomised (1:1) to receive perampanel (titrated to 6 mg daily over 4 weeks) or matching placebo, stratified by stroke subtype (ischaemic or haemorrhagic). Treatment will be continued for 12 weeks after titration. 7T MRI will be performed at baseline for quantification of cerebral glutamate by magnetic resonance spectroscopy and glutamate chemical exchange saturation transfer imaging. Blood will be collected for measurement of plasma glutamate levels. Participants will be followed up for 52 weeks after randomisation.The primary study outcome will be the proportion of participants in each group free of late (more than 7 days after stroke onset) poststroke seizures by the end of the 12-month study period, analysed by Fisher's exact test. Secondary outcomes will include time to first seizure, time to treatment withdrawal and 3-month modified Rankin Scale score. Quality of life, cognitive function, mood and adverse events will be assessed by standardised questionnaires. Exploratory outcomes will include correlation between cerebral and plasma glutamate concentration and stroke and seizure outcomes. ETHICS AND DISSEMINATION: This study was approved by the Alfred Health Human Research Ethics Committee (HREC No 44366, Reference 287/18). TRIAL REGISTRATION NUMBER: ACTRN12618001984280; Pre-results.


Subject(s)
Brain Ischemia , COVID-19 , Stroke , Clinical Trials, Phase II as Topic , Double-Blind Method , Humans , Nitriles , Pyridones , Quality of Life , Randomized Controlled Trials as Topic , SARS-CoV-2 , Stroke/complications , Stroke/drug therapy , Treatment Outcome
4.
Front Neurol ; 12: 621495, 2021.
Article in English | MEDLINE | ID: covidwho-1133933

ABSTRACT

We present information on acute stroke care for the first wave of the COVID-19 pandemic in Australia using data from the Australian Stroke Clinical Registry (AuSCR). The first case of COVID-19 in Australia was recorded in late January 2020 and national restrictions to control the virus commenced in March. To account for seasonal effects of stroke admissions, patient-level data from the registry from January to June 2020 were compared to the same period in 2019 (historical-control) from 61 public hospitals. We compared periods using descriptive statistics and performed interrupted time series analyses. Perceptions of stroke clinicians were obtained from 53/72 (74%) hospitals participating in the AuSCR (80% nurses) via a voluntary, electronic feedback survey. Survey data were summarized to provide contextual information for the registry-based analysis. Data from the registry covered locations that had 91% of Australian COVID-19 cases to the end of June 2020. For the historical-control period, 9,308 episodes of care were compared with the pandemic period (8,992 episodes). Patient characteristics were similar for each cohort (median age: 75 years; 56% male; ischemic stroke 69%). Treatment in stroke units decreased progressively during the pandemic period (control: 76% pandemic: 70%, p < 0.001). Clinical staff reported fewer resources available for stroke including 10% reporting reduced stroke unit beds. Several time-based metrics were unchanged whereas door-to-needle times were longer during the peak pandemic period (March-April, 2020; 82 min, control: 74 min, p = 0.012). Our data emphasize the need to maintain appropriate acute stroke care during times of national emergency such as pandemic management.

SELECTION OF CITATIONS
SEARCH DETAIL